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Abstract. We point out that the very notion of space reflection is ill-defined when physical 
states are defined on a fibre bundle describing a charge-Dirac monopole system. In other 
words, there is no lift of the space reflection operator to the total space ofsvch a non-trivial 
bundle. 

We constmct a well defined transposition operator of two dyons on the non-trivial 
two-dyon bundle; consequently, we can correctly define its action on local sections. It is 
shown that symmetric wavefunctions defined on this bundle cannot be transformed into 
antisymmetric ones by a gauge transformation, in contradiction to the well known statement 
first pointed ant in connection with the dyon spin problem. 

1. Introduction 

In the context of a trivial bundle, commonly used in physics, whose total space is 
equivalent to B x F, the Cartesian product of the configuration space B with some 
space F connected with some gauge degrees of freedom, there are no difficulties in 
formulating how a space-symmetry operator acts on sections (wavefunctions). Thus, 
states of a system defined on such a bundle correspond to global sections + ( X )  (i.e. 
+: B+ B x F for which p +  is an identity on the base B, where p is the projection 
B x F + B )  which may be subjected to the same operations as ordinary wavefunctions. 

But in the context of a system with a non-trivial bundle, i.e. one which can be 
represented by a Cartesian product U,, x F only over shrinkable regions U, of the 
base B (but not over the whole of B ) ,  the states are not ordinary functions (see e.g. . 
[l ,  21). They are local sections. In our case when the gauge group is U(1) they are 
local sections of a complex line bundle which we denote by LD. In an equivalent 
description [3], physical states can be represented as ordinary functions Y defined on 
the total space of the principal bundle D (with U(1) as fibre) associated with LD, and 
satisfying the equivariant condition [4] 

Y ( Z g )  = g - ’ Y ( Z )  Z E D  €!EU(1). (1) 
So, to define a simple operator on the bundle, say the space pari!y operator, we 

must ‘lift’ the operator 5 :  X + - X  defined on the base to operator 5 defined on the 
total space D. It is evident, ai least mathematically, that 5 must be an automorphism 
of the bundle, i.e. a mapping 5: D+ D preserving the bundle structure (the group U(1) 
action), 

(ij 
The non-existence of this lift 5‘ (which will be proved in section 2) leads to the 

absence of the correct notion of ‘space parity’ for the states defined on this bundle, 
and though it exists for the states globally defined on the base. 
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- 
f ( z g )  = ifizjjg V L  E U. 



900 A B Ryzhou and A G Sauinkou 

Thus, in the case of non-trivial bundles, one must always solve the problem of 
lifting. This same problem occurs in the construction of the dyon transposition operator 
for the two-dyon system. We will show that symmetric wavefunctions cannot be 
transformed into antisymmetric ones by a gauge transformation, in contradiction to 
the well known statement of Goldhaber [5] on the dyon statistics problem. 

2. Non-existence of a linear space reflection operator on the bundle attributed to a 
Dirac monopole 

Since we are working with monopole bundles, it is worth recalling some essential 
features. The system of a Dirac monopole and a charge has two local Hamiltonians 
(see e.g. [l]) due to the two choices of the monopole potential 

A, A,, =o, A+, =o, A,, =e tan - ( 2 2  9 
and 

corresponding to the domains U_ = R3\{x = y = 0, z E [0, +m)] and U+ = 
R3\{x = y = 0, z E (-m, O]}. The transition from the wavefunction $+ on U+ to the 
wavefunction $- on U- is determined by the transition function 

where q ( r )  is the azimuthal angle of the vector r from the monopole to the charge. 
Thus, a state of the system is described by a pair of functions (each bas its own domain) 
connected on the overlap U+n U_ by the transition function T+- given by 

T+_ = e x p ( 2 i e ~ q ( r ) )  

$+ = T+-& = exp(2 ie~q(r ) )$_ .  
This means that we have a complex-line fibre bundle with the base B = W’\{O} and 

pairs of functions $+, $- connected by T++, which make up a section of this bundle, 
i.e. a map $+: R’\{O)l.,+ LD satisfying p$+ = 1 on the base (where p is the projection 
of LD to the base). Alternatively, one can work with a principal fibre bundle D 
associated with LD in which case the pairs $+ and $- are represented by complex 
functions Y on D. The ingredients of this principal bundle are [4]: 

(i) the total space D = C2\{O), 
(ii) action U(1) on D :  exp(iq)(Z,, ZJ = (exp(iq)Z,, exp(iq)ZJ, 
(iii) projection p of D to the base B is 

(3 p (  Z )  = x, xi = ZU;Z, z = 

(iv) points (i-iii) are identical for all integer n = 2ep, the distinction lies in the 
choice of the class of functions ‘4: D + C, which is defined by the equivariant condition 

All transformations of states in the system with 2eg = n must leave ‘4 in the same 
class, i.e. preserve its equivariance condition. If a transformation of \I, is generated by 
a diffeomorphism f of D, then (it is a simple exercise) perserving the equivariance 
condition means that f is an automorphism of the bundle 

* ( z  exp(iq), Z exp(-iq)) =exp(inq)‘u(z, 2). 

f (Zg) =f (Z)g  Z E D  g c U ( 1 ) .  
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For simplicity, let us examine the fibre bundle D for fixed r = ZZ. It is the well 
known Hopf fibring S3+ S’. If the lift [ of the space reflection 5 existed, i.e. diagram 
(3) commuted, 

i S’ - S’ 

I p  (3) 

s 2 L  s2 

then 5 would be a one-to-one mapping. Hence its degree (winding number), deg 5, 
would be *l. Let us nowprove that this cannot be negative, i.e. deg52-1. Since 5 
has no fixed points, then 5 cannot have them and consequently its Lefschetz number 
(the algebraic number of fixed points) is Lef([) = 0. But the map J :  S 3 +  S’, defined 
by J(X,,Xz,X3,X4)=(X,,-X2,-X3,-X4) with d e g J = l ,  has two fixed points 
(1 ,0,0,0)  and (-1, O,O, 0); so, its Lefschetz number is Lef(J) = 2. The difference of 
Lefschetz numbers for J and 5 convinces us that J and [ cannot be in the same 
homotopy class and consequently have different degrees. So, the only possibility is 
d e g c = l .  

The degree of 5 is (-l), so, to get deg [= 1, the restriction o f f  to the fibres must 
have degree (-1) (the fibres are the orbits of the group U(1), oriented by its action). 
But the last property contradicts condition (2) because (2) implies the conservation 
of the orientation. 

Hence the only possible way to lift 5 is by violating property (2). For instance, the 
change of orientation can be realized by the condition 

(i.e. f is an ‘antiauto?orphism’). The operator of this kind f :  (Z , ,  Z2) + (-,Z!’, z,) is 
well known [6] .  Such 5 transforms n-equivariant functions ly to (-n)-equivariant ones 
(it is similar to CP). To restore n-equivariance one can conjugate ‘4’. Thus, on this 
bundle the lift (corresponding to condition (4)) of space reflection combined with time 
inversion T, which implies the conjugation of wavefunction, conserves the Schrodinger 
equation. 

There is another way to see the non-existence of a lift [ of the space reflection. 
Assume that [ exists. The commutative diagram (5) would then exist: 

i(Zg, = i(z)g-’ (4) 

9-L s3/[  
P I  I P ’  + J. 

S 2 - 1 ) S 3 / 5 = R P 2  

A simple topological consideration shows, however, that every principal U( 1)-bundle 
over RP2 is trivial, and thus the bundle S 3 / [ s  RP2 carries a flat connection wo.  
Therefore, the connection w = &*w, on the bundle is also Rat. This contradicts the 
non-triviality of the Hopf bundle S’ S’. 

3. Transposition operator on the non-trivial two-dyon fibre bundle 

For a long time the system consisting of a monopole and a charge (dyon) has been 
an example of how a spin is generated by two-particle interaction, in particular, of 
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how bosons can make up a fermion. The statistics problem of dyons was examined in 
Goldhaber’s well known work [ 5 ] ,  referred to in many reviews and popular lectures 
(see e.g. [7,8]). 

The monopole-charge system has a dynamical integral of motion J, whose com- 
ponents satisfy the commutation relations of the su(2)-algebra. It is widely asserted 
that through the monopole-charge interaction a spin n/2 = efi (lowest j) state is 
generated. If n/2 were a spin of the system, we would be able to solve a puzzle 
connected with spin and statistics (when n is odd), i.e. to make a fermion from two 
bosons (a spinless particle and a spinless Dirac monopole). Goldhaber [5] provided 
the solution to this problem in his study of the behaviour of the two-dyon wavefunction 
under transpositon. The puzzle is resolved by the following result. There are two 
gauge-equivalent descriptions of the two-dyon system. In the first case with symmetric 
wavefunctions $ and some Hamiltonian H, the dyons are regarded as bosons. In the 
second one with antisymmetric wavefunctions $’ and a Hamiltonian H’, the dyons 
are regarded (for n odd) as fermions. These descriptions are connected by a gauge 
transformation. 

However, the approach proposed in this work of Goldhaber does not take into 
account that the system including Dirac monopoles does not have a global wavefunction 
on the configuration space. (There are some configurations on which Hamiltonians 
and corresponding Schrodinger equations considered in [5] are not defined-when 
monopoles and charges are located along the Z-axis). The behaviour of a localfunction 
under dyon transposition is not a reason for concluding that a quantum state is fermionic 
or bosonic. The very possibility of obtaining a local function of arbitrary symmetricity 
confirms this. Rather, the sections of a complex line bundle should be examined. Using 
the correct approach, we consider the two-dyon bundle and construct the operator of 
dyon transposition defined on this bundle. As a consequence, we conclude that the 
behaviour of a section under dyon transpostion is a proper definition of the bosonic 
and fennionic quantum states. 

In the two-dyon case, in a natural way, one obtains 16 respective domains and 
Hamiltonians corresponding to the choices A+ and A- for each of four variables (see 
figure 1): 

A B Ryzhov and A G Savinkov 

r l , r ,2=rz+R2-RI  r,, rZ1 = r, + R, - R , .  

The transition map between wavefunctions defined on different domains (local sections) 
is a combination of the exp(2iepq); for instance, 

*+++- =*+--+ exp(2iep[drl2) + d r 2 )  - d r 2 d 1 ) .  

M 2 =  I ( r l ,  R I ,  r,, R2)IrI f 0, r I 2 # 0 ,  r 2 f  0, r2, ZO) 

Thus, the two-dyon bundle has the base 

Y 

Figure 1. Monopoles ~ 1 ,  g 2  with radius-vectors R, ,  R, and spinless charged panicles e l ,  
e2 with I,, rr being vectors from respective monopoles to them. 
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and this base is covered by the 16 regions 

{ U,b =(****I}, 
with transition functions T&. (In fact two of the regions, (+-+-) and (-+ -+), are 
empty because of a linear dependence rI - rI2 = r2,  - r2. )  

Equivalently, instead of sections of the aforementioned complex line bundle (let 
us denote it as LD2), one makes use of functions on the total space of the associated 
principal U(l)-fibre bundle 0 2 .  The states of the system are described either by 16 
functions, each pair connected by the transition function Tea on the overlap of their 
domains, or by a single function defined on the total space 0 2  (and satisfying condition 
(9)). 

The problem of determining the lift to 0 2  of an arbitrary element of the group 

= {(rl. RI,  r2, Rd E MZIr, E U,, r I 2 E  U,, r2E U,, 121 E UJ 

Diff(M2) of diffeomorphisms of the base M2 is connected with the exact sequence 

1 +Autv(DZ) A Aut(D2) -% Diff(M2) (6)  

Aut(DZ)=IfIf(ug)=f(u)g,  u ~ D 2 , g ~ U ( 1 ) } .  (7) 

where 

Autv(D2) is thegroupofgaugetransformations,i.e. thesubgroupofthegroupAut(D2) 
consisting of elements f which project to the identity transformation on the base: 
p , f =  1 (the homomorphism p* is induced by the projection p: 0 2 -  M2). 

The dyon transposition operator is an automorphism 4 of the fibre bundle, satisfying 
;* = 1 which is the lift of the mapping 

T: ( r l ,Rl ,  r2,  R2)+(r2.  R2, rI1  R I )  (8) 

defined on the base. if the iift 7  ̂ for T E DiiijliiZi existed, then ? wouid beiong to 
Aut(D2). Since we are interested in how i acts on local sections $ of the line bundle 
LD2 or, equivalently, on functions "(U) defined on the principal bundle 0 2  which 
satisfy the equivariance condition 

* ( u g ) = g - ' % ( u )  (9) 

where g c U ( l ) ,  ~ € 0 2  and rL,(X)=(a5Y)(X)=1Ir(a~(X)) for local sections a, in 
DZ, it is important to know how ; acts over the regions U, which cover the base. It 
is evident that T :  U, + Umc, where a':= (k l i j )  if 01 = ( i j k l ) .  So, it is convenient to define 
the automorphism in the form 

(9. X ) ,  + (hmc(X')g ,  Wm. X' := ( r2, R,, rI ,  RI) 

where .x = { r ; ,  R ; ,  r;, E;!: 
One can show that the correspondence 

(g ,  X ) ,  + k, x7,- 
correctly defines an automorphism GeAut(D2) which satisfies e*= 1 on the two-dyon 
fibre bundle 0 2 .  Then 

7^:k X ! , + ( T , d ( x C ) g , x ' i ,  (10) 

+',(X) := I). ( X C )  Tmc', (XC). 

for X E U, n U,.. Therefore, on the sections 
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For example, when a = (++++), a'= a, T,.. = 1, one has 

%++++(X) := +++++(X? 

;++-++(X) := e x p ( 2 i e p ~ t d r ~ J  - (P(~~~)I ) IP+-++(X~) .  

but when a=(+-++), one obtains 

The symmetry condition ?Y = Y of a global function over these regions has the form 

+=(XC)=+" for a = (+ +++) 

and 

$@P(Xc) =ex~(2ie~l~[(~(r,*)-(~(r~~)l)+@(X) for /3 = (+ -+ +). 

When IRl-R21+m, the right-hand side of the last equality tends to exp(2 iep~)  
+ o ( X )  = - $ @ ( X )  for 2ep odd. 

WIILc.II sa1151103 V * \ A  I - lo,* I ,U V@\* I W l l l U l l  >allS11Cb 

& ( X c ) = - + p ( X )  was interpreted in [SI by saying that the dyons are fermions (for 
2ep odd). Now we have different forms of the single symmetry condition iY = Y for 
different local sections. In general, on a non-trivial fibre bundle, a global section can 
be represented by symmetric and antisymmetric functions on the respective regions. 
The Mobius band is the simplest example (see figure 2). 

E,e iiai,c,c,Gi, fiOiii += ... I.:..& --.:-e-" I. I Y C ,  - .I I"\ .^ I , "\ -..L:-L 

- antrsymmetrlc functlon on 
the reglon 

- symmetric function on the region 

Flgure 2. Antisymmetrical and symmetrical functions on two charts of a circle (the base 
of the Mobius band), which compose a global section. 

Note that on a fibre bundle, the notion of being symmetric is properly formulated 
with respect to an automorphism ?The property 4Y = Y is the definition of a symmetric 
Y, and 6Y= -\y is the definition of an antisymmetric one. Hence, a symmetric global 
function (when we pass to the language of local sections) can take an antisymmetric 
form on certain regions. At first sight, this fact seemingly contradicts the Pauli principle 
namely, that an antisymmetric function must be equal to zero at r I  = r2,  R, = R, in 
contrast to the behaviour of a symmetric one. But on the two-dyon fibre bundle this 
is not a problem, since a symmetric wavefunction takes an antisymmetric local form 
only when IR, - R,I + m. 

Let us now return to the assertion in [ 5 ]  that a symmetric wavefunction of two 
identical dyons can be converted by a gauge transformation into an antisymmetrical 
form 'when n = 2ep is odd. The exactness of the sequence (6) implies that if there 
exists some lift on 0 2  of T defined on the base, then we have another exact sequence 

(11) l+Aut,  ( D 2 ) A  E &{I, ~ ) + l  

where E denotes the subgroup of Aut(D2), which is the extension of the group 
T = { l ,  T) by Aut"(D2). In addition, in order to satisfy the condition i2= 1, the 
homomorphism p* must have the right inverse s, p*s = 1 (i.e. the exact sequence (11) 
has to split). Let us prove that this condition is satisfied. 
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It is evident that any lift i (i = lift(7)) satisfies i2= (I E Aut,(D2), where (I may 
be regarded as a function on the base, (I = ( ~ ( p u )  = a ( X )  which follows from the fact 
that U(1) is Abelian. The base of the two-dyon fibre bundle M2 can be represented 
as the subset 

M2 = U 
( R I ,  R*IER'XR 

, {(RI,  RA X (R3\IRi1 R J )  X (W'\{R, I &}I} 

of R 3 x R 3 X R 3 x R ' .  One can show that the set of homotopy classes of mappings 
a: ( M 2 +  U(1) is trivial. It follows that y = arg(ct) is a function y. M2+R for arbitrary 
a ( X ) .  This fact is sufficient for the sequence (11) to split. Actually, let i 2 = a ( X ) =  
exp(iy(X)), then using the associativity in E, one can obtain Gexp(iy(X)) = 
exp(iy(X)). i( i .e.  y(X')=y(X)) .  Let us define i=iexp(- iy(X)/Z) .Then ;'=I. 

Having the operator 6 ( G 2 =  l ) ,  one can extract a symmetric and an antisymmetric 
function on the total space 0 2 ,  V, = {'PIt'P = +'PI, which satisfy the equivariance 
condition (9). It is evident that there is no gauge transformation (a E Aut,(D)) from 
any "+E Y+ to WE Y- for in this case a - ' ( X )  would vanish on the whole set of fixed 
points 

MO= U, ,{(R,R)xdiag(R'\(RI)x(R'\{R})Ic M 2  
( R , R ) E R  x m  

of the involution T on the base M 2 .  
In  the spirit of Souriau [9], we can also view the distinction between fermion and 

boson spaces as follows. If the particles are identical, the interchange operation (Z,) 
acts on two-dyon space M1= M 2 / M 0 .  Saying that the two dyons are identical means 
that the 'true' configuration space should be MI/Z, which is not simply connected: 
T , ( M I / Z , ) = H ~ .  The action of Z2 on the base lifts to the U(1) 'prequantum' bundle 
in two different ways with the consequence that the non-simply connected MlIZ, 
admits two distinct prequantizations corresponding to bosons and fermions. 

Summarizing the above discussion, we can assert that the arguments in favour of 
a gauge equivalence [ 5 ]  of two descriptions of the dyon as a boson and as a fermion 
are not correct in principle. There exist the well defined Hilbert spaces of boson and 
fermion states. The non-trivial structure of the fibre bundle affects the definition of 
the dyon transposition operator, but it does not affect the customary view. In the 

it follows from relativistic quantum theory. The choice of the proper symmetricity of 
a wavefunction on the two-dyon fibre bundle with a given ep may be completely 
defined only in relativistic quantum theory in the context of an explicit construction 
of multidyon fibre bundles. 

Nevertheless, a quantum mechanical counter-argument to the statement 'the dyon 
is a fermion' follows from the Zeeman effect in a weak field for the system formed by 
a spinless charge and a spinless monopole [IO]. The splitting for a dyon differs 
significantly from the splitting of levels for a n  ordinary fermion. 

In [ I l l ,  the definition of a dyon permutation is in accordance with ours, but the 
conclusions are different. The authors tried to reverse the statistics in another way (not 
by a gauge transformation). Their method is based on the independence of I, A(X) ds  
(where A(X) is a connection) on the path y in the chart of an 'asymptotic' fibre bundle. 
This independence is obtained by taking the surface S 'bounded by paths yI and y2' 
and integrating over it. But such a surface S does not exist, because by reducing U++++ 
(it is that which was done in [lo]) to the 'asymptotic' subset U++++ as consisting of 
the configurations with r , ,  r2<< r , * ,  r , , ,  the authors lose the simple connectedness of 

Fe--- ...-- Ir - F  -.."_ t..- -n.-h.n-ic- +h- ,.hni.m nf -+-+;o+:nc ir t-L-- f-n- -v-.a-:a-ne n- ,,a,,,Cwu,r. u, ' I U a L 1 L u L "  II.C*II(LIIICI, L L l r  CIIUIUL u, D L P L I O L . I O  10 L P L L b l L  ,,"U1 U'"ycL'c"cc "L 
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the region. It is not difficult to prove in fact (see the appendix), that the double dyon 
permutation (2w clockwise rotation, considered as a loop on 'asymptotic' configuration 
space Bas) is not contractible on U,,,"' (see figure 3). It follows that the deformation 
of this rotation in Bas to the identity also includes configurations where the field F =  dA 
cannot be neglected. That is why the dependence on the path is essential and a reversal 
of statistics does not occur. 

A B Ryzhov and A G Savinkoo 

b) 

Figure 3. ( a )  257 clockwise rotation (it is a path in configuration space). ( b )  The pair of 
curves (17,27) represents 211 rotation, the pair (I , , ,  2,,)-identical path. 

In a subsequent paper [12 ] ,  Friedman and Sorkin investigated an asymptotic 
spin-statistics theorem for dyons. They introduced an 'asymptotic equivalence' of 
bundles and examined the statistics on the non-interacting dyons bundle which is 
asymptotically equivalent to the bundle of interacting dyons. Such a transition to the 
bundle of non-interacting dyons differs from the standard one where the states of both 
interacting and free particles are defined on the same (trivial) bundle. 

In the case of interaction of a monopole and a charge, the product of their charges 
is quantized and the space of wavefunctions corresponding to a topological charge n # 0 

~ . = ( . U ( Z , Z ) I ~ ( Z ~ ' " , Z ~ - ' " ) = ~ ~ ' " " . U ( Z , Z ) }  
is orthogonal to that for n = O  (absence of interaction) (see [13]) 

(.U.,*,)=j *o*(z,Z)*.(Z,Z)dV(Z,Z) . U Y . , t o ~  P E  95' 
P 

Y. E 5" * , E 5 0 .  

Remark. The equivariance condition .U(Z e'", Z e-'") =e-ino 'U(Z, Z )  implies in 
particular that the functions of class 3,  are defined on a bundle space which is 
contracted to the 3~ lens space Li. This L: is quite different from iW3\{O} which is the 
domain of 5,. For instance w , ( L i )  = Z, # a,(R'\{O}) = al(S2) = 0. So the domains of 
9. and 5 ,  are not simply non-equivalent bundles, they are different as topological 
spaces! 

Thus, the forgetting of the interaction between the monopole of one dyon and the 
charge of another, is a transition to a quite different space of functions. That is why 
the behaviour of asymptotic wavefunctions under a dyon permutation on the bundles 
considered in [12] cannot be taken as a basis for a conclusion about dyon statistics. 
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The example of space reflection shows how radically this transition can change the 
properties with respect to a discrete transformation. There is no panty transformation 
on 3“, but it does exist on 5,. So it is impossible to remove the interaction by some 
continuous. procedure. In contrast to the usual quantum mechanics (on trivial bundles), 
this problem must be analysed directly for interacting dyons. 
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Appendix. Proof of non-simple connectedness 

Since dyons are regarded as being far from each other (at infinity) and their ‘internal 
structure’ is fixed, the configurations are determined by the position of the two dyons 
on the sphere S2 at infinity. A path in the configuration space is a motion of the two 
dyons on S2, hence it is represented by a pair of paths on S2. Let us suppose that there 
exists a homotopy 

h:[0,27r]x[0, 1]+S2XS2X[0,27r] 

which transforms the 27r clockwise rotation of dyons (represented by the pair of paths 
shown on figure 3 ( a ) )  to the identity 

h:(s,0)+(27rrot(sj,sj 

h :(s, l ) +  (id(s), s). 

Let us consider the configuration C E S2x S’, in which one of the dyons is located 
exactly under the other one. This is the case when one of the vectors rI2 and r2, has 
coordinates (0, 0, z < 0) and, consequently, this configuration does not belong to the 
chart U++++ (by the definition of U++++), hence it does not belong to its subset 
Now we will show that the deformation of the 25r rotation at the homotopy h contains 
this configuration, i.e. there exist lo and so such that 

h(so,h)+(C,so). 

With this aim let us consider these pairs of paths as curves in the cross-product 
S2x[0,27r]. Since it does not matter which dyon is under the other, it suffices to 
consider D ’ x  [0,27r] where ( D 2  is obtained from S2 by identifying the points (x, y ,  z) 
and (x, y ,  -2) E S2: D2 = {(x, y )  I (x, y ,  z )  E S’}). A path in configuration space Bas is 
represented by pair of curves with initial points on D2 x {O] and final points on D2 x(27r) 
(figure 3(b)j. Under the homotopy h the linked curves 1, and 2, must intersect to 
become unlinked as l id and 2id. The intersection point is C in the configuration space. 
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